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Summary

We describe a variance-components method for multi-
point linkage analysis that allows joint consideration of
a discrete trait and a correlated continuous biological
marker (e.g., a disease precursor or associated risk fac-
tor) in pedigrees of arbitrary size and complexity. The
continuous trait is assumed to be multivariate normally
distributed within pedigrees, and the discrete trait is
modeled by a threshold process acting on an underlying
multivariate normal liability distribution. The liability
is allowed to be correlated with the quantitative trait,
and the liability and quantitative phenotype may each
include covariate effects. Bivariate discrete-continuous
observations will be common, but the method easily ac-
commodates qualitative and quantitative phenotypes
that are themselves multivariate. Formal likelihood-
based tests are described for coincident linkage (i.e., link-
age of the traits to distinct quantitative-trait loci [QTLs]
that happen to be linked) and pleiotropy (i.e., the same
QTL influences both discrete-trait status and the cor-
related continuous phenotype). The properties of the
method are demonstrated by use of simulated data from
Genetic Analysis Workshop 10. In a companion paper,
the method is applied to data from the Collaborative
Study on the Genetics of Alcoholism, in a bivariate link-
age analysis of alcoholism diagnoses and P300 ampli-
tude of event-related brain potentials.

Introduction

The availability of suites of correlated phenotypes for
many common multifactorial traits can facilitate the
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study of these traits, by providing information beyond
what is contained in the traits individually. In principle,
statistical genetic analyses in which the correlations be-
tween the phenotypes are explicitly modeled can provide
greater power than that provided by univariate analysis
of the individual traits. Multitrait analysis can also im-
prove the detection of quantitative-trait loci (QTLs)
whose effects are too small to be found in single-trait
analyses, and it can facilitate the investigation of genetic
mechanisms such as pleiotropy and close linkage (Jiang
and Zeng 1995; Mangin et al. 1998). Joint genetic link-
age analysis of multiple correlated traits has been shown
to improve the power to detect, localize, and estimate
the effect of genes jointly influencing a complex disease
(Amos et al. 1990; Amos and Laing 1993; Schork 1993;
Jiang and Zeng 1995; Korol et al. 1995; Weller et al.
1996; Almasy et al. 1997; Blangero et al. 1997; De An-
drade et al. 1997; Wijsman and Amos 1997; Mangin et
al. 1998).

Multitrait analysis is not a panacea, however. In gen-
eral, joint analysis of multiple traits increases the number
of model parameters that must be estimated, and the
additional df increase the critical value of the test statistic
required to achieve a given level of statistical signifi-
cance. These factors can offset the potential gains from
joint consideration of the correlated characters, with the
result that multitrait analysis may actually be less pow-
erful than single-trait analysis, even with traits that are
highly correlated (Mangin et al. 1998). If the correlations
between traits are not appropriately handled—for ex-
ample, by true multivariate analysis or by means of or-
thogonal canonical variables—then some correction for
multiple nonindependent tests must be applied to control
the rate of type I error (Ducrocq and Besbes 1993; Weller
et al. 1996).

A frequently encountered situation in which the po-
tential benefits of joint multitrait linkage analysis are
likely to be realized is that of a discrete disease trait and
a correlated quantitative character. Many multifactorial
diseases—such as diabetes, glaucoma, hypertension,
schizophrenia, and alcoholism—are conventionally
studied as qualitative traits but are also associated with
correlated quantitative precursors, physiological risk
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factors, or other biological markers. Although the quan-
titative character may not be used explicitly to define
the qualitative disease state, both kinds of information
are useful and mutually supportive (Moldin 1994; Ott
1995). A quantitative risk factor may lend a degree of
classificatory flexibility to the clinical diagnosis of the
disease, whereas a definitive clinical presentation on the
basis of established criteria can be valuable in elucidation
of physiological relationships between the disease state
and related quantitative measures.

Considerable precedent exists for the joint analysis of
qualitative and quantitative traits in statistical genetics,
particularly in the areas of segregation analysis and par-
ametric linkage analysis (e.g., see Morton and MacLean
1974; Elston et al. 1975; Lalouel et al. 1985; Bonney et
al. 1988; Borecki et al. 1990; Moldin et al. 1990; Blan-
gero et al. 1992; Ott 1995). In the present report we
describe a variance-components method for joint mul-
tipoint linkage analysis of correlated discrete and con-
tinuous traits in pedigrees of arbitrary size and com-
plexity, and we illustrate the properties of the method
by using simulated pedigree data from Genetic Analysis
Workshop 10 (Goldin et al. 1997). In contrast to fully
parametric penetrance-based linkage methods for which
a mode of inheritance must be specified, the variance-
components approach requires fewer parameters to be
estimated (Lander and Schork 1994; Blangero 1995; Ti-
wari and Elston 1997).

We also describe likelihood-based tests for pleiot-
ropy—that is, whether the same QTL influences both
the discrete-trait state and the quantitative pheno-
type—and for close or coincident linkage—that is,
whether there is independent linkage of the traits to dis-
tinct, nonpleiotropic genes that happen to be linked
(Jiang and Zeng 1995; Mangin et al. 1998). In a com-
panion paper (Williams et al. 1999 [in this issue]) we
apply the qualitative-quantitative–trait linkage method
to bivariate data on alcoholism and P300 amplitude of
event-related brain potentials from the Collaborative
Study on the Genetics of Alcoholism (Begleiter et al.
1995).

Multivariate Analysis of Quantitative and Qualitative
Traits

Variance-components linkage analysis of a collection
of discrete and continuous traits can be approached as
a form of bivariate (i.e., two-trait) analysis in which one
variable represents the (possibly multivariate) discrete-
trait state and the other variable represents a (possibly
multivariate) correlated quantitative character. Follow-
ing previous usage (Lange and Boehnke 1983; Boehnke
et al. 1986; Lange 1997), we use the terms “univariate,”
“bivariate,” and “multivariate” to refer to the number
of phenotypes analyzed, although analysis of a single

phenotype in a pedigree containing more than one in-
dividual can involve multivariate distributions in the
strict statistical sense.

The theoretical foundation for polygenic multivariate
quantitative-trait variance-components analysis was de-
scribed by Lange and Boehnke (1983) and Boehnke et
al. (1986). Extensions of the variance-components ap-
proach to multipoint linkage analysis were later intro-
duced by Goldgar (1990), Schork (1993), Amos (1994),
and Almasy and Blangero (1998). In this section we
review briefly the theoretical framework for multipoint
variance-components linkage analysis of multivariate
phenotypes, and then we show how the method can be
modified to accommodate a mixture of qualitative and
quantitative data. For simplicity, the bivariate problem
of a discrete trait and an associated continuous biolog-
ical marker is used for illustration, but the model is easily
extended to include additional variables of either type.
For the special case of univariate discrete or continuous
data, the multivariate qualitative-quantitative model re-
duces to the expected univariate variance-components
model.

Bivariate Quantitative-Trait Linkage Analysis

Let and be the pedigree-′ ′x = (x , ) ,x ) y = (y , ) ,y )1 m 1 n

trait vectors for two quantitative phenotypes X and Y,
measured on m and n individuals, respectively. For a
univariate variance-components linkage analysis, we as-
sume that x and y are each normally distributed with
means andm = (m ,m , ) ,m ) m = (m ,m , ) ,m )X x x x Y y y y1 2 m 1 2 n

and variance-covariance matrices SX and SY. The log
likelihoods (ln L) of the phenotypes X and Y considered
individually are then given by

m 1
ln L = � ln (2p) � ln FS FX X2 2

1 ′ �1� (x � m ) S (x � m ) ,X X X2

n 1
ln L = � ln (2p) � ln FS FY Y2 2

1 ′ �1� (y � m ) S (y � m ) . (1)Y Y Y2

We note in passing that there are theoretical reasons
for assuming within-pedigree multivariate normality
(Lange 1978), as well as many indications that the as-
sumption is robust to distributional violations (Beaty et
al. 1985; Searle et al. 1992; Amos et al. 1996; Iturria et
al., in press). The assumption of multivariate normality
can be examined empirically (Gnanadesikan 1977; Hop-
per and Mathews 1982; Beaty et al. 1985, 1987), and
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univariate or multivariate normality of the phenotypes
can be induced by data transformations (Andrews et al.
1971; Boehnke and Lange 1984; Clifford et al. 1984;
Boehnke et al. 1986). Alternatively, one can either im-
plement robust estimators of standard errors for the
model parameters (Beaty et al. 1985, 1987; Beaty and
Liang 1987) or reformulate the pedigree likelihood in
terms of the multivariate t distribution (Lange et al.
1989). Provided that the phenotypic distribution is not
patently discontinuous (e.g., because it contains extreme
outliers) or characterized by extreme kurtosis, the as-
sumption of multivariate normality of the pedigree phe-
notypic vector has been found to be remarkably robust
to reasonable distributional violations (Iturria et al., in
press; J. Blangero, unpublished data).

The vector means in equation (1) are typically mod-
eled as functions of covariate information on the pedi-
gree members; that is, ,m = 1 a � W b m = 1 a �X m X X X Y n Y

, where 1m is a vector of m 1’s and, for each traitW bY Y

X and Y, a is the grand mean; W is the design matrix
whose m or n rows contain l covariates such as age, sex,
and environmental factors for each pedigree member;
and b is the vector of regression coefficients. Forl # 1
linkage analysis, the covariance matrices can be modeled
as

2 2 2ˆS = Pj � 2Fj � I j ,X q a m eX X X

2 2 2ˆS = Pj � 2Fj � I j , (2)Y q a n eY Y Y

where is a matrix whose elements are the estimatedˆ ˆP pij

proportion of genes shared identical by descent (IBD),
at the QTL, by individuals i and j; is the additive2jq

genetic variance due to the major locus; F is the kinship
matrix for the pedigree; is the variance due to residual2ja

additive genetic effects (i.e., polygenes and, potentially,
other major genes); I is the identity matrix; and is the2je

variance due to random, individual-specific environ-
mental effects (Lange et al. 1976; Amos 1994; Almasy
and Blangero 1998).

The matrix in equation (2) is an estimate of the trueP̂

IBD-sharing matrix P (whose elements are necessarily
0, , or 1) and is determined, by use of a regression-1

2

based approach, on the basis of (a) the estimated IBD
matrices at a set of markers and (b) the distances of the
markers from the QTL (Fulker et al. 1995; Almasy and
Blangero 1998). The covariance matrices in equation (2)
model the resemblance between relatives that is due
solely to the effect of a major gene on a background of
residual additive genetic effects and individual-specific
environmental variation, but additional genetic and en-
vironmental effects and interactions are easily incorpo-
rated (Hopper and Mathews 1982; Blangero 1993; Wil-
liams and Blangero 1999).

If phenotypes X and Y are correlated, univariate anal-
ysis of the individual phenotypes disregards the addi-
tional information implicit in the correlational structure.
A bivariate analysis in which this phenotypic correlation
is explicitly modeled will exploit more of the information
content of the data and will improve the power of sta-
tistical tests for hypotheses of interest.

To implement a bivariate variance-components anal-
ysis, assume that the composite phenotype Z has the
pedigree-trait vector ,′xz = [ ] = (z , ) ,z ,z , ) ,z )1 n n�1 2ny
which follows a 2n-variate normal distribution with
mean mZ and covariance matrix SZ. The log likelihood
of the bivariate data z is then

2n 1
ln L = � ln (2p) � ln FS FZ Z2 2

1 ′ �1� (z � m ) S (z � m ) ,Z Z Z2

where

m 1 a W 0 bX n X X Xm = = �Z [ ] [ ] [ ] [ ]m 1 a 0 W bY n Y Y Y

and a, W, and b have their previous definitions and
interpretation. Separate design matrices and vectors of
regression coefficients are retained for each trait, to em-
phasize that different sets of covariates could be used
for the discrete and the continuous data; for example,
smoking or alcohol consumption might be a significant
covariate for one of the traits but not for the other.

The covariance matrix for Z has the partitioned
structure

S SX XYS = ,Z ( )S SYX Y

where SX and SY are as in equation (2), and the matrix
of cross-covariances is given byS = SXY YX

2 2 2ˆS = Pj � 2Fj � I j . (3)XY q a n eXY XY XY

Note that the cross-covariance matrix SXY is defined only
when —that is, when both phenotypes X and Ym = n
have been measured for each pedigree member. This re-
striction can be relaxed, however, by appropriate eval-
uation of the pedigree likelihood; this is discussed further
below.

The natural bounds on the cross-covariances in equa-
tion (3) are . The parameterization in terms of2 2� �� j jX Y

cross-covariances is computationally inconvenient, how-
ever (Boehnke et al. 1986), and a parameterization in
terms of correlations is achieved by writing 2j =XY

, where rXY is the correlation between traits Xj j rX Y XY
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and Y. The covariance matrix for Z can then be ex-
pressed compactly, as ,ˆS = P � Q � 2F � A � I � EZ n

where matrices Q, A, and E are the QTL, polygenic, and
environmental variance components, respectively, and

is the Kronecker-product operator (Searle 1971). In�

general, when k traits in a pedigree having n individuals
are being considered, matrices , F, and I have dimen-P̂

sion ; matrices Q, A, and E are ; and SZ isn # n k # k
. In a univariate analysis Q, A, and E reduce tonk # nk

their scalar equivalents , , and . In a bivariate2 2 2j j jq a e

analysis Q, A, and E are matrices of the form2 # 2

2j j j rv v v vX X Y XY ,( )2j j r jv v v vY X YX Y

where is the correlation, between X and Y, that isrvXY

due to effect v, and v is q, a, or e; thus, is the cor-raXY

relation between the additive genetic components of the
two traits, is the correlation between the individualreXY

trait environmental factors, and is the correlationrqXY

between the major-gene effects.

Joint Analysis of Qualitative and Quantitative Data

When all phenotypic data are of a single type—that
is, are either quantitative or qualitative in nature—the
likelihood of the complete pedigree data can be specified
without any special partitioning of the variables. When
some phenotypes are continuous and others are discrete,
however, it becomes convenient to partition the total
likelihood into factors descriptive of each type of data
and to develop each factor accordingly.

To modify the bivariate quantitative approach out-
lined above for the situation involving mixed discrete
and continuous data, associate one of the pedigree phe-
notype vectors (x, say) with the continuous phenotype
and the other (y) with an underlying, continuous liability
value on the basis of which the discrete trait is deter-
mined by a threshold process (Wright 1934a, 1934b;
Crittenden 1961; Falconer 1965, 1989; Mendell and Els-
ton 1974; for alternative approaches to polychotomous
traits, see Morton et al. 1970). The joint likelihood of
observing a particular configuration of continuous phe-
notype values and discrete-trait statuses within a pedi-
gree can be factored as , where L(x)L(x,y) = L(x)L(yFx)
is the likelihood of observing the continuous data on the
pedigree members and L(yFx) is the conditional likeli-
hood of observing liabilities consistent with the affection
statuses of the pedigree members, given their values for
the continuous phenotype. No distributional assump-
tions are implied by this factorization, although multi-
variate normality of the joint distribution for x and y
must be invoked so that the separate factors can them-
selves be modeled as multivariate normal.

If the notation and assumptions of the previous section

are used, the marginal likelihood of the continuous data
x can be written as

1
L(x) =

1n
2[(2p) d S d]X

1 ′ �1# exp � (x � m ) S (x � m ) . (4)X X X[ ]2

The likelihood of the discrete data for an individual i is
given by the integral of the liability function over a range
determined by the individual’s trait status; thus,

bi

2L(yFx ) = f(y; m ,j )dy ,i i � YFX YFX

ai

where denotes the univariate-normal2f(y; m ,j )YFX YFX

probability-density function centered at mYFX with con-
ditional variance , and ai and bi are the threshold2jYFX

values on the liability distribution between which the
individual will express the observed trait. For a dichot-
omous trait

(0, � �) if i is affected (has the trait)
(a ,b ) = ;i i {(��,0) if i is unaffected

the model is completely general, however, and readily
accommodates polychotomous data (Hasstedt 1993).

For a pedigree of n individuals, the conditional like-
lihood of the discrete data is given by the multiple
integral

b b1 n

L(yFx) = ) f(y; m ,S )dy , (5)� � Y dX Y dX

a a1 n

where f(y;mYFX,SYFX) is the multivariate-normal density
function having conditional mean mXFY and covariance
matrix SYFX. The mean vector and covariance matrix for
the conditional liability distribution are determined by
means of a standard result for conditioning a multivar-
iate normal on a subset of its variables (Searle 1971;
Tong 1990); thus, and�1m = m � S S (x � m )Y dX Y YX X X

, where mX, mY, SX, SY, and�1S = S � S S SY dX Y YX X XY

have their previous meanings. The conditionalS = SYX XY

mean liability mYFX is, in general, different for each in-
dividual, depending on any covariates that are intro-
duced as fixed effects.

The likelihoods in equations (4) and (5) are finally
multiplied to give the total joint likelihood of the discrete
and continuous observations in a pedigree:
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Figure 1 Genetic model for simulated data: random environ-
mental effect (E), major genes with additive effects (MG4, MG5, and
MG6), observable quantitative trait (Q4), unobservable quantitative
trait (liability) (Q5), observable discrete disease trait derived from Q5
(D5), residual environmental correlation (.40) (re), and population
prevalence of D5 (30%) (KP). Unlabeled numbers indicate the per-
centage of relative additive genetic and environmental variance com-
ponents for each trait. (Adapted from MacCluer et al. [1997])

L(x,y) = L(x)L(yFx)

1 1 ′ �1= exp � (x � m ) S (x � m )X X X1 [ ]n 22[(2p) d S d]X

b

# f(y; m ,S )dy ,� Y dX Y dX

a

(6)

where vector limits of integration a,b are used as a no-
tational convenience to represent the multiple integral
in equation (5). For a collection of independent (i.e.,
unrelated) pedigrees, the total likelihood is simply the
product of the individual pedigree likelihoods. Equation
(6) fully specifies the joint likelihood of a bivariate mix-
ture of discrete- and continuous-trait data. Note that the
regression on covariates and the estimation of variance
components are not explicitly separated in equation (6),
consistent with our practice of maximizing the likeli-
hood jointly with respect to mean and random effects.
This is not essential, however, and the regression of trait
values on covariates could be performed independently
of the estimation of the variance components, with rel-
atively little effect on the final estimates for either set of
parameters.

Likelihood Evaluation

The expression for the joint likelihood L(x,y) in equa-
tion (6) must, in general, be evaluated numerically, and
locating the allowable configuration of parameters that
maximizes the likelihood can become computationally
intensive. The results reported below were obtained by
means of a likelihood-estimation algorithm described by
Hasstedt (1993). The algorithm is a generalization of an
iterated conditional univariate-integration strategy for
evaluation of the multivariate-normal distribution (Pear-
son 1903; Aitken 1934; Mendell and Elston 1974; Rice
et al. 1979; Van Eerdewegh 1982) and can accommodate
mixtures of major-locus effects, quantitative data, po-
lychotomous traits, and multivariate phenotypes. The
algorithm is computationally extremely fast and, in gen-
eral, yields good approximations even for large pedi-
grees. The primary disadvantages of the algorithm are
the lack of a specifiable error bound on the resulting
approximation and the potential for systematic bias in
the estimated likelihood (J. T. Williams, unpublished
data). When applied to the likelihood in equation (6),
the technique of iterated conditioning and univariate-
probability calculation has several useful consequences:
the total likelihood is estimated without explicit sepa-
ration of the marginal and conditional factors, obviating
the task of determining mYFX and SYFX; explicit matrix
inversion is not required; and the working assumption

that both the discrete and continuous phenotypes have
been measured for each pedigree member can be relaxed,
minimizing the information loss that is due to incomplete
observations.

Simulation Results

To illustrate the properties of the variance-compo-
nents approach to joint linkage analysis of discrete and
continuous traits, the method was applied to a subset
of the simulated data from problem 2 of Genetic Anal-
ysis Workshop 10 (GAW10) (Goldin et al. 1997). The
results show that joint consideration of a discrete trait
and a correlated quantitative phenotype can improve the
estimation of genetic parameters and increase the evi-
dence for linkage of the traits to a major gene, compared
with univariate analysis of the individual traits. Simu-
lation results and power estimates for bivariate variance-
components linkage analysis of strictly quantitative data
have been reported by Almasy et al. (1997). Independent
evaluation of a variance-components approach to link-
age analysis of bivariate quantitative phenotypes is
found in the work of Schork (1993), and specific ap-
plications of joint qualitative-quantitative linkage anal-
ysis to real data sets are found in the work of Williams
et al. (1999 [in this issue]) and Czerwinski et al. (in
press). Related investigation of the statistical perform-



Williams et al.: Joint Qualitative-Trait/Quantitative-Trait Multipoint Linkage Analysis 1139

Table 1

Estimates of Parameters, at Location of Major Gene MG4
(Chromosome 8), in Univariate and Bivariate Multipoint
Linkage Analyses of GAW10 Data, for 200 Replications

ANALYSIS AND

PARAMETER EXPECTED

MEAN � SD OBSERVED IN

Nuclear
Families

Extended
Pedigrees

Univariate Q4:
2hq 28.0 28.1 � 8.6 29.3 � 8.9
2ha 27.0 26.4 � 11.7 25.7 � 11.5

Univariate D5:
2hq 14.0 16.8 � 13.2 14.9 � 10.6
2ha 23.0 24.5 � 16.1 25.6 � 12.7

Bivariate Q4/D5:
2hQ4 q 28.0 27.8 � 8.3 30.5 � 7.0
2hQ4 a 27.0 26.8 � 11.3 24.4 � 10.1
2hD5 q 14.0 15.9 � 10.4 15.7 � 7.2
2hD5 a 23.0 24.1 � 13.4 23.8 � 11.2

ra 77.0 79.3 � 32.8 78.5 � 23.5
re 40.0 40.5 � 8.1 39.6 � 8.3

Table 2

Estimates of Parameters, at Location of Major Gene MG5
(Chromosome 9), in Univariate and Bivariate Multipoint
Linkage Analyses of GAW10 Data, for 200 Replications

ANALYSIS AND

PARAMETER EXPECTED

MEAN � SD OBSERVED IN

Nuclear
Families

Extended
Pedigrees

Univariate Q4:
2hq 16.0 16.3 � 8.5 17.9 � 7.1
2ha 39.0 38.1 � 10.6 36.8 � 9.3

Univariate D5:
2hq 23.0 21.6 � 12.8 23.8 � 13.2
2ha 14.0 20.1 � 16.0 17.2 � 12.2

Bivariate Q4/D5:
2hQ4 q 16.0 16.8 � 8.0 18.0 � 6.7
2hQ4 a 39.0 37.6 � 10.1 36.8 � 8.8
2hD5 q 23.0 19.7 � 11.3 24.7 � 9.5
2hD5 a 14.0 21.2 � 13.4 15.7 � 9.7

ra 84.7 86.5 � 23.4 87.4 � 15.2
re 40.0 40.3 � 8.0 39.5 � 8.0

ance for univariate variance-components analysis of dis-
crete and continuous traits is available in the work of
Duggirala et al. (1997), Williams et al. (1997), and Wil-
liams and Blangero (1999).

Data

The simulated data for GAW10 comprise two sets of
family data for a common oligogenic disease (MacCluer
et al. 1997). Each problem set has the same underlying
additive genetic and environmental model, the same
number of living individuals, the same number of sib-
ships, and the same distribution of sibship sizes for living
sibs (686 siblings distributed among 239 sibships, as 114
sib pairs, 68 sib triplets, 38 sib quartets, 12 sib quintets,
and 7 sib sextets). In each data set, individuals !16 years
of age are excluded. Phenotypic data are available for
all living individuals, and genotypic data are available
for all individuals, living or dead.

Problem 2A consists of 200 replications of 239 nuclear
families, and each replication contains 1,164 individuals,
1,000 of whom are living. Nuclear families are randomly
ascertained, subject to the constraint that there be at
least two living offspring. Problem 2B consists of 200
replications of 23 extended pedigrees, and each repli-
cation has 1,497 individuals, 1,000 of whom are living.
Pedigrees are randomly ascertained through a 40–60-
year-old male or female having at least three living off-
spring and three full sibs. Pedigrees include the proband,
the spouse of the proband, and all first-, second-, and
third-degree relatives of the proband and of the spouse.

The genome for GAW10 comprises 10 chromosomes
and is mapped by 367 markers spaced an average of
2.03 cM apart, with 24–50 markers per chromosome.

The total genome length is 726 cM. The markers are
highly polymorphic, having 4–15 alleles (mean 6.7) and
a mean heterozygosity of .77. There is no disequilibrium
among the markers.

Genetic Model

The generating genetic model used for the tests is di-
agrammed in figure 1. The model is a subset of the com-
plete GAW10 generating model described by MacCluer
et al. (1997) and is different from the genetic model
investigated by Almasy et al. (1997). Quantitative traits
Q4 and Q5 are influenced by major genes MG4, MG5,
and MG6 but otherwise have no polygenic, nonrandom
environmental (i.e., age and environmental factor) or
sex-specific variance components. Major gene MG4 is
located at 51.2 cM on chromosome 8, MG5 at 15.7 cM
on chromosome 9, and MG6 at 13.7 cM on chromo-
some 10. Quantitative trait Q5 was dichotomized to
simulate a discrete disease trait D5 having a population
prevalence of over all replications, by definingK = 30%P

as “affected” all individuals exceeding a predetermined
threshold value for the trait. The resulting genetic model
demonstrates both pleiotropic action of MG4 and MG5
on phenotypes Q4 and D5 and the single-gene action of
MG6 on Q4. The contribution of MG6 introduces a
residual additive genetic component in univariate link-
age analysis of Q4 and in bivariate linkage analysis of
Q4 and D5.

Parameter Estimation

Univariate and bivariate multipoint linkage analyses
of Q4 and D5 were performed for all 200 replications
for chromosomes 8 and 9 in the GAW10 nuclear-family
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Table 3

Mean LOD Scores, P Values, and CVs at Location of Major Gene MG4 (Chromosome 8), in Univariate
and Bivariate Analyses of GAW10 Data, for 200 Replications

ANALYSIS

NUCLEAR FAMILIES EXTENDED PEDIGREES

LOD Score P CV LOD Score P CV

Univariate D5 .39 .0888 1.21 .59 .0493 1.14
Univariate Q4 2.36 �44.86 # 10 .55 5.05 �77.10 # 10 .47
Bivariate Q4/D5a 2.63 [2.15] �48.23 # 10 .51 5.62 [4.92] �77.80 # 10 .39

a Values in square brackets are LOD[1] values.

Table 4

Lod Scores, P Values, and CVs at the Location of Major Gene MG5 (Chromosome 9) in
Univariate and Bivariate Analyses of GAW10 Data, for 200 Replications

ANALYSIS

NUCLEAR FAMILIES EXTENDED PEDIGREES

LOD Score P CV LOD Score P CV

Univariate D5 .60 .0488 .96 1.44 �35.03 # 10 .89
Univariate Q4 .97 .0174 .85 2.15 �48.23 # 10 .70
Bivariate Q4/D5a 1.49 [1.09] .0126 .64 3.40 [2.87] �41.37 # 10 .53

a Values in square brackets are LOD[1] values.

and extended-pedigree data. Likelihoods were estimated
by the algorithm described by Hasstedt (1993). The
mean estimates of QTL effect size and residual additive
heritability for each analysis are given in table 1, for
MG4, and in table 2, for MG5. For the bivariate anal-
yses, the mean estimates of the additive genetic and en-
vironmental correlations are also given. SDs represen-
tative of any single analysis are reported for all estimates.
The expected parameter values are derived from the rel-
ative variances given in table 3 of a report by MacCluer
et al. (1997).

The mean parameter estimates at the location of major
gene MG4 on chromosome 8 are shown in table 1. Bi-
variate linkage analysis accurately recovers the gener-
ating parameters of the underlying genetic model. Es-
timates of the additive genetic and environmental
correlation are in excellent agreement with expectation,
although the SD for the estimate of the genetic corre-
lation is large. The estimates of residual additive and
QTL heritability from univariate and bivariate analysis
are essentially unbiased. A similar pattern in parameter
estimation is seen at the location of major gene MG5
on chromosome 9 (table 2).

Corresponding parameter estimates obtained in uni-
variate and bivariate linkage analyses are not signifi-
cantly different, but the estimates from the bivariate
analysis are more precise as a result of exploitation of
the correlation between the traits. The increase in pre-
cision is greatest for parameters related to D5 and is
relatively minor for parameters related to continuous
trait Q4, indicating that joint consideration of the dis-
crete trait in the linkage analysis does not contribute
greatly to parameter estimation for the quantitative trait,

although the availability of the correlated quantitative
trait leads to moderate improvement in the estimation
of effects related to the discrete trait.

Type I Error Rate

The rate of type I error experienced in the joint mul-
titrait linkage analysis can be estimated on the basis of
the occurrence of false-positive signals observed in a se-
ries of independent tests of linkage to chromosomal
regions that are unlinked to any of the major genes in
the model shown in figure 1. A single location on each
of chromosomes 1–7 from the GAW10 data was tested
for linkage in all 200 replications of the nuclear-family
data, constituting 1,400 independent tests of linkage.
The following estimates of the type I error rate cor-â

responding to selected nominal values of a (in paren-
theses) were obtained: (.05),.0529 � .0060 .0100 �

(.01), and (.001). Analysis of all.0027 .0007 � .0007
200 replications of the extended-pedigree data gave the
following results: (.05),.0564 � .0062 .0079 � .0024
(.01), and (.001). These estimates are not.0007 � .0007
significantly different from the nominal values; thus,
there is no indication in these data that the type I error
rate is inflated by joint linkage analyses of the two
phenotypes.

Mean LOD Scores

Mean LOD scores at the locations of major genes
MG4 and MG5, together with their P values and co-
efficients of variation (CVs), are given in tables 3 and
4, respectively. The CV controls for the variation in the
mean LOD score itself, with sampling unit and data type,
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Figure 2 Multipoint LOD scores for GAW10 data on chromosome 8, in univariate and bivariate linkage analyses of Q4 and D5

and is a more appropriate measure of the variability of
the LOD score between replications than is the standard
error (Williams and Blangero 1999). The bivariate LOD
score has 2 df and does not correspond directly with the
familiar univariate LOD score; consequently, in tables 3
and 4, two scores are given for each bivariate analysis:
the true bivariate LOD score having 2 df and the bi-
variate LOD score after adjustment to 1 df (denoted as
“LOD[1]”). LOD[1] is determined as the 1-df LOD score
required to give the same P value as is given by the true
bivariate LOD score, and it can be compared directly
with the univariate LOD scores.

At the location of each major gene, comparison of the
univariate LOD score for D5 versus the bivariate LOD
score for Q4/D5 illustrates the effect of supplementing
a focal qualitative trait (i.e., D5) with a correlated quan-
titative character (i.e., Q4). At MG4 on chromosome 8
(table 3) a nonsignificant LOD score ( ,LOD = 0.59

) is obtained in univariate analysis of D5 inP = .0493
extended pedigrees. However, when the discrete trait is
examined jointly with the correlated continuous char-
acter Q4 in a bivariate analysis, the LOD score increases
to a statistically significant level ( ,LOD = 4.92 P =[1]

). Significant evidence for linkage to MG4�77.80 # 10
is not detected with either phenotype when nuclear fam-
ilies are used.

At the location of major gene MG5 on chromosome
9 (table 4), a nonsignificant LOD score ( ,LOD = 1.44

) is obtained in univariate analysis of�3P = 5.03 # 10
D5 in extended pedigrees, and nonsignificant evidence
for linkage ( , ) is also found�4LOD = 2.15 P = 8.23 # 10
with univariate analysis of Q4. When the discrete trait
is examined jointly with the correlated continuous phe-
notype, the LOD score increases but does not quite
achieve statistical significance ( ,LOD = 2.87 P =[1]

). Statistically significant evidence for link-�41.37 # 10
age to MG5 is not detected with either phenotype when
nuclear families are used.

Alternatively, one can compare the univariate LOD
scores for Q4 versus the bivariate LOD scores for Q4/
D5, to understand the effect of supplementing a focal
quantitative trait Q4 with a correlated discrete trait D5.
At MG4 on chromosome 8 (table 3), univariate analysis
of Q4 in extended pedigrees gives strong evidence for
linkage ( , ). When the quan-�7LOD = 5.05 P = 7.10 # 10
titative trait is analyzed jointly with the correlated dis-
crete trait D5, the additional information provided by
the qualitative trait does not quite counteract the in-
creased df in the test—the evidence for linkage decreases
slightly but remains significant ( ,LOD = 4.92 P =[1]

). At MG5 on chromosome 9 (table 4), a�77.80 # 10
nonsignificant LOD score ( ,LOD = 2.15 P = 8.23 #

) is obtained in univariate analysis of Q4; in bivar-�410
iate analysis of Q4 with the correlated discrete trait D5,
the LOD score increases and nearly achieves statistical
significance ( , ).�4LOD = 2.87 P = 1.37 # 10[1]
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Figure 3 Multipoint LOD scores for GAW10 data on chromosome 9, in univariate and bivariate linkage analyses of Q4 and D5

Multipoint LOD-Score Plots

Multipoint LOD-score plots for chromosomes 8 and
9 are shown in figures 2 and 3, respectively, for a rep-
resentative replicate of the extended-pedigree data. Each
plot shows the LOD-score curves from the univariate
analyses of Q4 and D5 and from the bivariate analysis
of Q4/D5; also shown is the bivariate LOD score LOD[1]

after adjustment to 1 df. The location of major genes
MG4 (51.2 cM on chromosome 8) and MG5 (15.7 cM
on chromosome 9) are indicated, and in each figure the
peak LOD score accurately localizes the major gene, to
within a few centimorgans.

In figure 2, univariate analysis of Q4 easily detects
linkage to MG4 ( , ), and,�10LOD = 8.03 P = 5.98 # 10
in this replication, significant evidence for linkage is also
detected in univariate analysis of D5 ( ,LOD = 3.30

). Bivariate analysis of the discrete and�5P = 4.88 # 10
continuous phenotypes also gives significant evidence for
linkage ( , ). If D5 is re-�10LOD = 6.97 P = 1.58 # 10[1]

garded as the focal phenotype, then bivariate analysis
clearly extracts markedly greater evidence for linkage of
the trait to MG4. If Q4 is the focal phenotype, however,
then bivariate analysis of Q4 with the correlated discrete
trait leads to a slight reduction in the evidence for linkage
(although the LOD score remains highly significant) as
the number of df in the test increases without sufficient
additional linkage information.

In the multipoint LOD-score plot of figure 3, neither
univariate analysis provides significant evidence for link-
age to MG5 on chromosome 9 (for Q4, ,LOD = 2.89

; for D5, , ), but�4P = 1.32 # 10 LOD = 1.09 P = .0124
evidence for linkage is statistically significant in the bi-
variate analysis ( , ). In this�5LOD = 3.55 P = 2.57 # 10[1]

case, it does not matter which trait is regarded as the
focal phenotype; bivariate analysis of either trait with
the correlated character yields significant evidence for
linkage where none is detected with univariate analysis.

Figures 2 and 3 illustrate that the evidence for linkage
in a multivariate linkage analysis of positively correlated
phenotypes is not necessarily the sum of the evidence
for linkage in separate univariate analyses (Jiang and
Zeng 1995; Korol et al. 1995). Although the multipoint
LOD-score curves for the univariate and bivariate anal-
yses can have similar profiles, the linkage evidence ob-
tained in the joint analysis derives in part from the cor-
relation of the discrete and continuous traits.

Testing Pleiotropy and Coincident Linkage

When multiple traits are analyzed, the hypotheses of
pleiotropy and of close linkage of independent major
genes are of particular interest (Jiang and Zeng 1995;
Mangin et al. 1998). These hypotheses are easily tested
in the multitrait variance-components approach, by
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Table 5

Likelihood-Ratio Tests for Pleiotropy and Coincident Linkage at Locations of Major Genes MG4 and
MG5, for Extended-Pedigree Data Used in Figures 2 and 3

NULL

DISTRIBUTION

MAJOR GENE MG4 MAJOR GENE MG5

l P l P

Complete pleiotropy 1 12 2x : x1 02 2 .00 .5000 .00 .5000

Coincident linkage 2x1 28.06 �71.18 # 10 17.82 �52.43 # 10

comparison of the likelihoods of appropriate nested
models (Boehnke et al. 1986; Almasy et al. 1997).

In the bivariate analysis of Q4 and D5, the mecha-
nisms of complete pleiotropy and coincident linkage are
special cases of the general two-QTL genetic linkage
model in which the effects due to potentially distinct
QTLs ( and ) are estimated and the correlation2 2j jQ4 q D5 q

between these effects (rq) is unconstrained. To test for
complete pleiotropy, the likelihood of a two-QTL link-
age model in which the correlation rq between the QTLs
is estimated is compared with the likelihood of a two-
QTL linkage model in which rq is constrained to �1
(the sign of rq is chosen to agree with the sign of the
polygenic correlation ra). To test for coincident linkage
of the traits to two independent but closely spaced genes
having additive effects, the likelihood of a linkage model
in which rq is estimated is compared with the likelihood
of a model in which rq is constrained to 0.

Table 5 summarizes the likelihood-ratio tests for com-
plete pleiotropy and coincident linkage made at the lo-
cation of major genes MG4 and MG5 in the extended-
pedigree replicate used to prepare figures 2 and 3. For
each test, the table gives (a) the value of the likelihood-
ratio statistic , where L0 and L1 are,l = �2 ln (L /L )0 1

respectively, the likelihoods of the indicated null and
alternative models; (b) the asymptotic distribution of the
statistic under the null model; and (c) the corresponding
P value. The asymptotic distributions for these tests were
determined by use of the methods described by Self and
Liang (1987). The test against complete pleiotropy does
not give significant results at either location, whereas the
test against coincident linkage gives significant results at
both locations. For each location, the inference is that
joint variation in Q4 and D5 is mediated by a common
QTL, which indeed corresponds with the genetic model
shown in figure 1.

Discussion

Quantitative risk factors, disease precursors, and bi-
ological markers are often known to be correlated, caus-
ally or statistically, with qualitatively assessed disease
states. Conversely, robust clinical diagnosis of a disease
condition may be available to supplement the measure-
ment of physiologically implicated quantitative pheno-

types. In either situation, joint linkage analysis of the
discrete and continuous traits can be used to exploit the
correlational information between the disease state and
the quantitative trait, in the search for mediating genetic
factors.

From a statistical point of view, the nature of the re-
lationship between the discrete trait and the quantitative
character can be used to distinguish three general situ-
ations. First, the discrete trait may have been constructed
by ad hoc polychotomization of an inherently contin-
uous physiological quantity. For example, diastolic
blood pressure (DBP) and systolic blood pressure (SBP)
are used to classify hypertension into “mild” (DBP �90
mm Hg, SBP �140 mm Hg) and “severe” (DBP �95
mm Hg, SBP �165 mm Hg) presentations. In Western
populations, body-mass index (BMI) is frequently di-
chotomized into “obese” (BMI 127) and “nonobese”
(BMI �27) phenotypes. A diagnosis of type 2 diabetes
is indicated by fasting blood-glucose levels 1140 mg/dl.
One of the defining criteria in the diagnosis of glaucoma,
in addition to examination of the optical disk and testing
of the visual field, is intraocular pressure 122 mm Hg.

With other disease traits, the qualitative state and the
quantitative character may exhibit different relation-
ships before and after clinical disease onset. If the disease
radically alters patient physiology, for example, then pre-
viously correlated quantitative measures may no longer
display any direct or regular relationship with the disease
trait. Type 2 diabetes, although generally studied as a
dichotomous trait defined on the basis of fasting blood-
glucose levels, provides a good example of a complex
relationship between the clinical presentation of the dis-
ease and a related continuous physiological quantity
(Ghosh and Schork 1996). Insulin resistance is strongly
associated with the development of type 2 diabetes, and
elevated insulin concentration is a significant risk factor
for the disease (Lillioja et al. 1993). Longitudinal studies
have shown that elevated insulin concentrations occur
prior to the onset of clinical diabetes (Lillioja et al.
1987). Once overt diabetes is established, insulin con-
centration often continues to increase for a time but
eventually will decline as indigenous insulin production
becomes compromised. In this case, a disease trait (di-
abetes) and a quantitative biological marker (insulin
concentration) are correlated until disease onset and for
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some time thereafter, but the relationship between the
two is not stable, and the quantitative phenotype may
effectively become truncated after clinical presentation
of the disease.

Yet a third situation is encountered with psychiatric
disorders such as schizophrenia, alcoholism, or bipolar
disorder, for which diagnosis is generally made on a
binary (presence/absence) basis, at a nominal level, or,
perhaps, on an ordinal scale of severity having relatively
few and possibly mutually nonexclusive classes. With
psychiatric disorders, there are no directly related, in-
herently continuous characters, as there are with obesity
or diabetes, but there are often correlated quantitative
biological markers that can be measured easily. For ex-
ample, the amplitude of the P300 component of event-
related brain potentials is significantly lower in individ-
uals at risk for alcoholism (Begleiter et al. 1984; Polich
et al. 1994; Porjesz et al. 1998), and schizophrenia is
correlated with a number of altered psychophysiological
paradigms (Blackwood et al. 1991; Freedman et al.
1997).

In the first of these situations involving paired discrete
and continuous observations, the discrete trait is an ad
hoc construct and contributes no new information. The
discrete construct essentially remeasures an available
quantitative trait, and, in so doing, introduces measure-
ment error that, in a variance-components analysis, will
appear as environmental variance (Falconer 1989, p.
305). When the observable phenotype is inherently con-
tinuous, methods of linkage analysis for quantitative
traits are to be preferred (Comuzzie et al. 1997; Dug-
girala et al. 1997). For common diseases in particular,
it is appropriate to examine the continuum of variation
rather than to limit studies to “affected” individuals.
Furthermore, the use of continuous traits does not pre-
clude ascertainment (nonrandom sampling) to enrich the
tails of the phenotypic distribution. In any event, the use
of a discretized version of an available, biologically con-
tinuous phenotype for linkage analysis is plainly unnec-
essary and will markedly reduce the power to detect and
localize genes influencing such phenotypes (Xu and
Atchley 1996; Duggirala et al. 1997; Wijsman and Amos
1997).

In the second and third situations described above, it
would clearly be advantageous to exploit the indepen-
dent information in the discrete and the continuous
traits, as well as the correlational information between
them. In particular, linkage analysis to detect and localize
genetic factors influencing a disease trait can benefit con-
siderably from joint consideration of the disease and a
correlated quantitative factor (Moldin 1994; Ott 1995;
Almasy et al. 1997; Blangero et al. 1997; Williams et
al. 1999 [in this issue]). Depending on the genetic eti-
ology of the phenotypes and the structure of the cor-
relation between the discrete and continuous traits, one

can, in general, expect both increased power to detect
linkage and improved estimation of QTL effect size and
location, compared with univariate analysis of the in-
dividual phenotypes.

The ability to jointly analyze multivariate qualitative
and quantitative data also suggests some interesting an-
alytical possibilities. For example, a multivariate discrete
phenotype comprising disease diagnoses under different
diagnostic systems could be investigated, and the quan-
titative phenotype might be a vector of measurements
monitoring specific physiological processes. Specific
knowledge of the precise causal relationships, if any,
between the discrete traits and the quantitative charac-
ters is not required in order to exploit any statistical
dependence between them, but several investigators have
discussed the criteria that a biological marker should
meet to be useful in statistical genetic analyses of a cor-
related qualitative disease (Begleiter et al. 1984; Lander
1988; Blackwood et al. 1991; Moldin 1994; Porjesz et
al. 1998).

In the companion paper (Williams et al. 1999 [in this
issue]), we apply the method for joint qualitative-quan-
titative–trait linkage analysis to data, from the Collab-
orative Study on the Genetics of Alcoholism, on alco-
holism diagnoses and event-related brain potentials
(Begleiter et al. 1995). There we find that simultaneous
consideration of a correlated quantitative phenotype
(P300 amplitude of event-related potential) significantly
increases the evidence for linkage to a discrete disease
trait (alcoholism).
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